Aktueller Hinweis
Diese Seite befindet sich noch in Bearbeitung.
Abteilung Geochemie/Petrologie
Die Abteilung Geochemie/Petrologie befasst sich mit der Geochemie und Petrologie der festen Erde, d. h. mit der materiellen Struktur der Erde, der Verteilung, Stabilität und dem Kreislauf chemischer Elemente und Isotopen in Mineralien, Steinen und wässrigen Lösungen. Der Fokus der Forschungsprojekte der Abteilung liegen derzeit im Bereich der Vulkanologie, Geochronologie, metamorphen Petrologie und Strukturgeologie und der Interaktion zwischen Feststoffen und wässrigen Lösungen sowie in Bereichen der technischen und angewandten Mineralogie.
Neue Webseite ‚Junges Museum‘ für Kinder & Jugendliche
Das Mineralogische Museum hat nun einen extra Internetauftritt für ein jüngeres Publikum. Auf der Seite ‚Junges Museum‘ finden unsere jungen Gäste viele Fotos, Infos rund um das Museum und unsere Angebote.
Im Rahmen der Projektlinie „vielfältig.nachhaltig.digital“ aus dem Strategiefonds „Zukunftsorientierte Lehre“ wird das Projekt „Geowissenschaften Digital verstehen“ (GeoDiver) (Mario Manchego & Gerwin Wulf) ab Oktober 2024 mit einem Beitrag von ~53t Euro von der Universität Bonn gefördert. Ziel ist es ein digitales Exkursionsangebot schaffen, das (i) didaktisch komplett auf die Nutzung digitaler Lehre ausgerichtet ist, (ii) den lehrtechnischen Ansprüchen eines geowissenschaftlichen Studiums entspricht und (iii) ein virtuelles Exkursionserlebnis bietet, das der tatsächlichen Geländeerfahrung möglichst nahekommt.
Die Studierenden des Masterstudiengangs Physik der Erde und Atmosphäre haben im Rahmen des Moduls "Hydrogeophysik" in der Pfingstwoche 2024 unter anderem eine Geoelektrik-Messung auf der Insel Spiekeroog durchgeführt. Ziel dieser Messung war es, Informationen über die Beschaffenheit des Untergrunds und die vorherrschende Grundwassersituation zu sammeln.
Unsere Arbeitsgruppen
Arbeitsgruppe Prof. Dr. Thorsten Geisler-Wierwille
Arbeitsgruppe Prof. Dr. Ambre Luguet
Peters D., Rizo H., R.W. Carlson R.W., Walker R.J., R.L. Rudnick R.L., and Luguet A. (2023) Tungsten in the mantle constrained from continental lithospheric peridotites: Less incompatible and more abundant. Geochimica et Cosmochimica Acta, 351,
167−180. https://doi.org/10.1016/j.gca.2023.04.016
Zhang Q., Morel M.L.A., Liu J., Legros H., Luguet A., Viljoen K.S., Davies G.R., and Pearson D.G. (2022) Re-healing cratonic mantle lithosphere after the world's largest igneous intrusion: Constraints from peridotites erupted by the Premier kimberlite,
South Africa (2022). Earth Planetary Science Letters, 598: 117838. https://doi.org/10.1016/j.epsl.2022.117838
Luguet A., Nowell G.M., Pushkarev E., and Ballhaus C. (2022) Reply to Comment on" Pt-190-Os-186 geochronometer reveals open system behaviour of Pt-190-He-4 isotope system" by Yakubovich et al. (2022). Geochemical Perspective Letters, 20, 19
−21. https://doi.org/10.7185/geochemlet.2202
Kirchenbaur M., Schuth,S., Barth A.R., Luguet A., König S., Idrus A., Garbe-Schönberg D., and Münker C. (2022) Sub-arc mantle enrichment in the Sunda rear-arc from HFSE systematics in high-K lavas from Java. Contributions to Mineralogy and
Petrology, 177: 8. https://doi.org/10.1007/s00410-021-01871-9
Wanji S., Deribe K., Minich J., Debrah A.Y., Kalinga A., Kroidl I., Luguet A., Hoerauf A., and Ritter M. (2021) Podoconiosis: from known to unknown: Obstacles to tackle. Acta Tropica, 219: 105918. https://doi.org/10.1016/j.actatropica.2021.105918
Tappe S., Stracke A., van Acken D., Strauss H., and Luguet A. (2020) Origins of kimberlites and carbonatites during continental collision – insights beyond decoupled Nd-Hf isotopes. Earth-Science Reviews: 103287.
https://doi.org/10.1016/j.earscirev.2020.103287
Schulz T., Sackl F., Fragner E., Luguet,A., van Acken D., Abate B., Badjukov D., and Koeberl C. (2020) The Zhamanshin impact structure, Kazakhstan: A comparative geochemical study of target rocks and impact glasses. Geochimica et Cosmochimica
Acta, 268, 209−229. https://doi.org/10.1016/j.gca.2019.08.045
Luguet A., Nowell G. M., Pushkarev E., Ballhaus C., Wirth R., Schreiber A., and Gottman I. (2019) Pt-190-Os-186 geochronometer reveals open system behaviour of Pt-190-He-4 isotope system. Geochemical Perspective Letters, 11, 44−48.
https://doi.org/10.7185/geochemlet.1924
Ozdemir S., Schulz T., van Acken D., Luguet A., Reimold W.U., and Koeberl C. (2019) Meteoritic highly siderophile element and Re-Os isotope signatures of Archean spherule layers from the CT3 drill core, Barberton Greenstone Belt, South Africa.
Meteoritics & Planetary Science, 54, 2203−2216. https://doi.org/10.1111/maps.13234
Luguet A. and Pearson D.G. (2019) Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides and platinum group minerals. American Mineralogist, 104(2), 165−189.
https://doi.org/10.2138/am-2019-6557
Lorand J.-P., Pont S., Chevrier V.F., Luguet A., Zanda B., and Hewins R. (2019) Petrogenesis of Martian sulfides in the Chassigny meteorite. American Mineralogist, 103(6), 872−885. https://doi.org/10.2138/am-2018-6334
Liu J., Brin L.E., Pearson D.G., Bretschneider L., Luguet A., van Acken D., Kjarsgaard B.A., Riches A., and Miskovic A. (2018) Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and
Central Victoria Island. Geochimica et Cosmochimica Acta, 239, 284−311. https://doi.org/10.1016/j.gca.2018.08.010
Jaques A.L., Luguet A., Smith C.B., Pearson D.G., Yaxley G.M., and Kobussen A. (2018) Nature of the mantle beneath the Argyle AK1 lamproite pipe: constraints from mantle xenoliths, diamonds and lamproite geochemistry". In A.T. Davy, C.B. Smith, H.
Helmstaedt, A.L. Jaques, J.J. Gurney (ed.), Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Society of Economic Geologists, USA, pp. 119−143.
Tassara S., González-Jiménez J.-M., Reich M., Saunders J.E., Luguet A., Morata D., Grégoire M., van Acken D., Schilling M., Barra F., Nowell G.M., and Corgne A. (2018) Highly siderophile elements mobility in the subcontinental lithospheric mantle
beneath southern Patagonia. Lithos, 314-315, 579−596. https://doi.org/10.1016/j.lithos.2018.06.022
Bragagni A., van Acken D., Fonseca R.O.C., Speelmanns I.M., Wainwright A.N., Heuser A., Nowell G.M., and Luguet A. (2018) Re-Os and HSE in individual base metal sulfide grains: Evaluating micro-analytical procedures using a sulfide reference
material. Chemical Geology, 493, 426−440. https://doi.org/10.1016/j.chemgeo.2018.06.020
Real C., Fassmer K., Carosi R., Froitzheim N., Rubatto D., Groppo C., Münker C., and Ferrando, S. (2023) Carboniferous-Triassic tectonic and thermal evolution of the middle crust section of the Dervio-Olgiasca Zone (Southern Alps). Journal of
Metamorphic Geology, 41, 685−718. https://doi.org/10.1111/jmg.12714
Klug L. and Froitzheim N. (2022) Reuniting the Ötztal Nappe: the tectonic evolution of the Schneeberg Complex. International Journal of Earth Sciences, 111, 525−542. https://doi.org/10.1007/s00531-021-02127-4
Weber S., Hauke M., Martinez R. E., Redler C., Münker C., and Froitzheim N. (2022) Fluid-driven transformation of blueschist to vein eclogite in a subducted sliver of continental crust (Monte Emilius, Italian Western Alps). Journal of Metamorphic Geology,
40, 553−584. https://doi.org/10.1111/jmg.12638
Miladinova I., Froitzheim N., Nagel T.J., Janák M., Fonseca R.O.C., Sprung P., and Münker C. (2022) Constraining the process of intracontinental subduction in the Austroalpine Nappes: Implications from petrology and Lu-Hf geochronology of eclogites.
Journal of Metamorphic Geology, 40, 423−456. https://doi.org/10.1111/jmg.12634
Trapp S., Janák M., Fassmer K., Froitzheim N., Münker C., and Georgiev N. (2021) Variscan ultra-high-pressure eclogite in the Upper Allochthon of the Rhodope Metamorphic Complex (Bulgaria). Terra Nova, 33, 174−183.
https://doi.org/10.1111/ter.12503
Froitzheim N., Majka J., and Zastrozhnov D. (2021) Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave. Proceedings of the National Academy of Sciences, 118: e2107632118.
https://doi.org/10.1073/pnas.2107632118
Keppler R., Vasin R., Stipp M., Lokajicek T., Petruzalek M., and Froitzheim N. (2021) Elastic anisotropies of deformed upper crustal rocks in the Alps. Solid Earth, 12, 2303−2326. https://doi.org/10.5194/se-12-2303-2021
Klonowska I., Majka J., Janák M., Petrík I., Froitzheim N., Gee D. G., and Cuthbert S. (2021) Comment on the paper: „Evolution of a gneiss in the Seve nappe complex of central Sweden – Hints at an early Caledonian, medium-pressure metamorphism“
by Li et al. (2020). Lithos, 400: 106067. https://doi.org/10.1016/j.lithos.2021.106067
Schmidtke M. J., Keppler R., Kossak-Glowczewski J., Froitzheim N., and Stipp M. (2021) Elastic anisotropies of rocks in a subduction and exhumation setting. Solid Earth, 12: 1801−1828. https://doi.org/10.5194/se-12-1801-2021
Fassmer K., Froitzheim N., Janák M., Strohmeyer M., Bukala M., Lagos M., and Münker C. (2021) Diachronous collision in the Seve Nappe Complex: Evidence from Lu-Hf geochronology of eclogites (Norrbotten, North Sweden). Journal of Metamorphic
Geology, 39, 819−842. https://doi.org/10.1111/jmg.12591
Fassmer K., Martinet I., Miladinova I., Sprung P., Froitzheim N., Fonseca R.O.C., Münker C., Janák M., and Kullerud K. (2020) Lu-Hf geochronology of ultra-high-pressure eclogites from the Tromso-Nappe, Scandinavian Caledonides: evidence for rapid
subduction and exhumation. International Journal of Earth
Sciences, 109, 1727–1742. https://doi.org/10.1007/s00531-020-01866-0
Ellero A., Malusà M.G., Ottria G., Ouanaimi H., and Froitzheim N. (2020) Transpressional structuring of the High Atlas belt, Morocco. Journal of Structural Geology, 135: 104021. https://doi.org/10.1016/j.jsg.2020.104021
Zhang Y.Q., Tsai C.H., Froitzheim N., and Ustaszewski K. (2020) The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates. Terrestrial Atmospheric and Oceanic Sciences, 31, 415−435.
https://doi.org/10.3319/TAO.2020.06.28.01
Hauke M., Froitzheim N., Nagel T.J., Miladinova I., Fassmer K., Fonseca R.O.C., Sprung P., and Münker C. (2019) Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes
(Schobergruppe, Austria). International Journal of Earth Sciences, 108, 1317−1331. https://doi.org/10.1007/s00531-019-01708-8
Petrik I., Janak M., Klonowska I., Majka J., Froitzheim N., Yoshida K., Sasinkova V., Konecny P., and Vaculovic T. (2019) Monazite behaviour during metamorphic evolution of a diamond-bearing gneiss: A case study from the Seve Nappe Complex,
Scandinavian Caledonides. Journal of Petrology, 60, 1773−1796. https://doi.org/10.1093/petrology/egz051
Pohl F., Froitzheim N., Obermüller G., Tomaschek F., Schröder O., Nagel T.J., Sciunnach, D., and Heuser A. (2018) Kinematics and age of syn-intrusive detachment faulting in the Southern Alps: evidence for Early Permian crustal extension and
implications for the Pangea A vs. B controversy. Tectonics, 37, 3668−3689. https://doi.org/10.1029/2018TC004974
Real C., Froitzheim N., Carosi R., and Ferrando S. (2018) Evidence of large-scale Mesozoic detachments preserved in the basement of the Southern Alps (northern Lago di Como area). Italian Journal of Geosciences, 137, 283–293.
https://doi.org/10.3301/IJG.2018.15
Miladinova I., Froitzheim N., Nagel T. J., Janák M., Georgiev N., Fonseca R.O.C., Sandmann S., and Münker C. (2018) Late Cretaceous eclogite in the Eastern Rhodopes (Bulgaria): evidence for subduction under the Sredna Gora magmatic arc.
International Journal of Earth Sciences, 197, 2083−2099. https://doi.org/10.1007/s00531-018-1589-7
Fougerouse D., Geisler T., Reddy S.M., Aleshin M., Martin L., Doucet L.S., Quadir Z., Saxey D., and Rickard W. (2023) Melt-mediated re-equilibration of zircon produced during meltdown of the Chernobyl reactor. American Mineralogist, in press:
https://doi.org/10.2138/am-2022-8842
Mähler B., Janssen K., Lönartz M.I., Lagos M., Geisler T., Rust J., and Bierbaum G. (2023) Microbial shift during the decomposition of crayfish in freshwater and sediment under different environmental conditions. Scientific Reports, 13:
https://doi.org/10.1038/s41598-023-28713-x.
Lönartz M., McCoy V.E., Gee C.T., and Geisler T. (2023) Paleoenvironmental conditions for the natural vulcanization of the Eocene “monkeyhair” laticifers from Geiseltal, Germany, as elucidated by Raman spectroscopy. Palaeobiodiversity and Palaeoenvironments: https://doi.org/10.1007/s12549-022-00566-8.
Kral A.G., Lagos M., Guagliardo P., Tütken T., and Geisler T. (2022) Rapid alteration of cortical bone in fresh- and seawater solutions visualized and quantified from the millimeter down to the atomic scale. Chemical Geology, 609: 121060.
https://doi.org/10.1016/j.chemgeo.2022.121060
Böhme N., Hauke K., Dohrn M., Neuroth M., and Geisler T. (2022) High-temperature phase transformations of hydroxlyapatite and the formation of silicocarnotite in the hydroxylapatite-quartz-lime system studied in situ and in operando by Raman
spectroscopy. Journal of Materials Research, 57, 15239–15266. https://doi.org/10.1007/s10853-022-07570-5
Neumann J.T., Black J., Smith B., Hœrlé S., Watkins R., Lagos M., Ziegler A., and Geisler T. (2022) Artificial weathering of rock types bearing petroglyphs from Murujuga, Western Australia. Heritage Science, 10: 77.
https://doi.org/10.1186/s40494-022-00706-5
Müller G., Fritzsche M., Dohmen L., and Geisler T. (2022) Feedbacks and non-linearity of silicate glass alteration in hyperalkaline solution studied in operando by fluid-cell Raman spectroscopy. Geochimica et Cosmochimica Acta, 329, 1−21.
https://doi.org/10.1016/j.gca.2022.05.013
Poonoosamy J., Mahrous M., Curti E., Bosbach D., Deissmann G., Churakov S.V., Geisler T., and Prasianakis N. (2021) Unravelling (Ba,Sr)SO4 oscillatory zoning: A lab-on-a-chip approach integrating in-situ characterization and reactive transport
modelling diagnostics. Scientific Reports, 11, 1−15. https://doi.org/10.1038/s41598-021-02840-9
Smith B.W., Black J.L., Hœrlé S., Ferland M.A., Diffey, S.M., Neumann J.T., and Geisler T. (2021) The impact of industrial pollution on the rock art of Murujuga, Western Australia. Rock Art Research, 9, 3−14. ISSN 0813-0426
Diver A., Dicks O., Elena A.M., Todorov I.T., Geisler T., and Trachenko K. (2021) Radiation damage effects on Helium diffusion in zircon. Journal of Materials Research, 36, 3239–3247. https://doi.org/10.1557/s43578-021-00327-x
Lenting C. and Geisler T. (2021) Corrosion of ternary borosilicate glass in acidic solution studied in operando by fluid-cell Raman spectroscopy. npj Materials Degradation, 5: 37. https://doi.org/10.1038/s41529-021-00182-5
Weber K.W., Weber M., Menneken M., Kral A.G., Mertz−Kraus R., Geisler T., Vogel J., and Tütken T. (2021) Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth − an in-vitro alteration experiment of biogenic apatite in
isotopically enriched tracer solution. Chemical Geology, 572: 120196. https://doi.org/10.1016/j.chemgeo.2021.120196
Kral A.G., Ziegler A., Tütken T., and Geisler T. (2021) Experimental aqueous alteration of cortical bone microarchitecture analyzed by quantitative micro-computed tomography. Frontiers in Earth Science, 9: 609496.
https://doi.org/10.3389/feart.2021.609496
Colle J.−E., Manara D., Geisler T., and Konings R.J.M. (2020) Advances in the application of Raman spectroscopy in the nuclear field. Spectroscopy Europe, 32, 18−22. ISSN 0966-0941 (online)
Böhme N., Hauke K., Neuroth M., and Geisler T. (2020) In situ hyperspectral Raman imaging of ternesite formation and decomposition at high temperatures. Minerals, 10: 287. https://doi.org/10.3390/min10030287
Barthel H.J., Fougerouse D., Geisler T., and Rust J. (2020) Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLOS ONE, 15(2): e0228843. https://doi.org/10.1371/journal.pone.0228843
Böhme N., Hauke K., Neuroth M., and Geisler T. (2019) In situ Raman imaging of high-temperature solid-state reactions in the CaSO4−SiO2 system. International Journal of Coal Science and Technology, 6, 247−259.
https://doi.org/10.1007/s40789-019-0252-7
Asjadi F., Geisler T., Salahi I., Euler H., and Mobasherpour I. (2019) Ti-substituted hydroxylapatite precipitated in the presence of titanium sulphate: A novel photocatalyst? American Journal of Chemistry and Applications, 6, 1−10. ISSN: 2381-4535
(Online)
Kehren J., Zimmer S., Hauke K., and Geisler T. (2019) The formation of calcium silicates in the CaO-SiO2 system studied in situ by hyperspectral Raman spectroscopy. 62nd Int. Colloquium on Refractories, Aachen, Germany, EUROGRESS, 111−114.
Lönartz M.I., Dohmen L., Lenting C., Trautmann C., Lang M., and Geisler T. (2019) The effect of heavy ion irradiation on the forward dissolution rate of borosilicate glasses studied in situ and real time by fluid-cell Raman spectroscopy. Materials, 12: 1480.
https://doi.org/10.3390/ma12091480
Geisler T., Dohmen L., Lenting C., and Fritzsche M.B.K. (2019) Real−time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nature Materials, 18, 342−348.
https://doi.org/10.1038/s41563-019-0293-8
Hauke K., Kehren J., Böhme N., Zimmer S., and Geisler T. (2019) In situ hyperspectral Raman imaging: A new method to investigate sintering processes of ceramic material at high-temperature. Applied Science, 9: 1310.
https://doi.org/10.3390/app9071310
Lenting C., Plümper O., Kilburn M., Guagliardo P., Klinkenberg M., and Geisler T. (2018) Towards a unifying mechanistic model for silicate glass corrosion. npj Materials Degradation, 2: 28. https://doi.org/10.1038/s41529-018-0048-z
King H. and Geisler T. (2018) Tracing mineral reactions using confocal Raman spectroscopy. Minerals, 8: 158. https://doi.org/10.3390/min8040158
Stange K., Lenting C., and Geisler T. (2018) Insights into the evolution of carbonate-bearing kaolin during sintering revealed by in situ hyperspectral Raman imaging. Journal of the American Ceramic Society, 100, 1−14. https://doi.org/10.1111/jace.15209
Gäb F., Ballhaus C., Siemens J., Heuser A., Lissner M., Geisler T., and Garbe−Schönberg D. (2018) Siderite cannot be used as CO2 sensor for Archaean atmospheres. Geochimica et Cosmochimica Acta, 214, 209−225.
https://doi.org/10.1016/j.gca.2017.07.027